The different development of the anisotropic upper critical field in MgB$_2$ by aluminum and carbon doping M. ANGST, S.L. BUD'KO, R.H.T WILKE, P.C. CANFIELD, Ames Laboratory USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA — The temperature dependence of the upper critical field, H_{c2}, for both field directions in partially substituted polycrystalline MgB$_2$ was determined. Whereas the suppression of T_c is similar for aluminum and carbon substituted samples, H_{c2} is affected by the substitution in profoundly different ways. In the case of Al substitution changes can tentatively be described by intrinsic effects (shift of the Fermi level). In the C substituted samples, H_{c2} is increased drastically, and extrinsic effects (disorder) have to play a major role. The strong contrast between the two substitutions is discussed, taking into account three relevant scattering rates.