Oxygen Anneal Effect on Single Crystalline $\text{Sr}_2\text{RhO}_4 - x$

SHIN-ICHI IKEDA, AIST, ICHIRO NAGAI, YOSHIYUKI YOSHIDA, NORIO UMEYAMA, NAOKI SHIRAKAWA, NANOELECTRONICS RESEARCH INSTITUTE, AIST TEAM — Two dimensional perovskite-type transition metal oxides provide rich issues which originate from strong electron-electron correlation such as a spin triplet superconductivity in Sr_2RuO_4, quantum criticality at around the metamagnetic transition in $\text{Sr}_3\text{Ru}_2\text{O}_7$ and antiferromagnetic metal phase in $\text{Ca}_3\text{Ru}_2\text{O}_7$. We regard Rh oxides as another intriguing materials because of the similarity. Especially, Sr_2RhO_4 has been studied using single crystals grown by a floating-zone method. The importance of the oxygen content in Sr_2RhO_4 will be discussed based upon the results of electrical resistivity, magnetic susceptibility and specific heat.

Shin-Ichi Ikeda
AIST

Date submitted: 01 Dec 2004