Abstract Submitted for the MAR05 Meeting of The American Physical Society

First-Principles Hartree-Fock Investigation of Electronic Structure and Hyperfine Properties of Deoxyhemoglobin K. RAMANI LATA, R. H. SCHEICHER (*), N. SAHOO (**), T. P. DAS (***), Dept. of Physics, SUNY at Albany, NY, S. BYAHUT, Central Dept. Of Physics, Tribhuvan University, Kathmandu, Nepal — The electronic structure of Deoxyhemoglobin is studied using the Unrestricted Hartree–Fock Cluster Procedure considering as representative the entity involving the porphyrin ring, the Fe^{2+} ion and the proximal histidine. The positions of the atoms are taken from X-ray data. The calculated electronic structure of the spin S=2 system is used to derive the magnetic hyperfine fields, nuclear quadrupole interaction parameters and the Mossbauer isomer shifts for the 57m Fe. The results are in good agreement with experiment, providing support for the accuracy of the calculated isotropic and anisotropic components of the spin density and electronic charge density near the 57m Fe nucleus. Results for the hyperfine properties of ¹⁴N, ¹³C, ¹H and ²H nuclei will also be discussed. (*) Present Address: Dept. of Physics, Uppsala University, Sweden (**) Present Address: M. D. Anderson Center, Houston, Texas (***) Also: Dept. of Physics, University of Central Florida, Orlando, Florida

> Ralph Scheicher Uppsala University

Date submitted: 01 Dec 2004

Electronic form version 1.4