Pressure-induced Phase Transition of Confined Water from ab initio Molecular Dynamics Simulation

SHENG MENG, Department of Applied Physics, Chalmers University of Technology and Gothenburg University, SE-412 96 Gothenburg, Sweden, E.G. WANG, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China, SHIWU GAO, Department of Applied Physics, Chalmers University of Technology and Gothenburg University, SE-412 96 Gothenburg, Sweden — We present an ab initio molecular dynamics study of pressure induced melting of an ice thin film confined between two parallel metal surfaces. The ice-to-water phase transition has been observed at a pressure of roughly 0.5 GPa, when the film is compressed by 6.6 percent. The latter is in agreement with the volume change in the melting of bulk ice. The effects of non-adiabatic compression on the layer-dependent momentum distribution and the electronic redistribution at the interfaces are presented and discussed.