Slow dynamics of an elastic string in a random potential

ALEJANDRO KOLTON, Université de Genève, DPMC, 24 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland, ALBERTO ROSSO, LPTMS, Université Paris-Sud F-91405 ORSAY Cedex, France, THIERRY GIAMARCHI, Université de Genève, DPMC, 24 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland — We study the slow dynamics of an elastic string in a two dimensional pinning landscape by means of Langevin dynamics simulations. We find that the Velocity-Force characteristics are well described by the creep formula predicted from phenomenological scaling arguments. However, at strong disorder, the creep exponent \(\mu \) and the roughness \(\zeta \) of the string display a clear deviation from the values \(\mu \approx 1/4 \) and \(\zeta \approx 2/3 \) expected assuming a quasi-equilibrium-nucleation picture of the creep motion. We also analyzed the non-stationary relaxation of the string towards the steady state. We identify a slowly growing length \(L(T, F, t) \) separating equilibrated and non-equilibrated length scales during the relaxation. For equilibrated lengths, \(l < L \), we find a roughness \(\zeta \approx 2/3 \) at \(F = 0 \) while for small \(F > 0 \) an “excess” of roughness \(\zeta > 2/3 \) is always observed.

Alejandro Kolton
Université de Genève, DPMC, 24 Quai Ernest Ansermet
CH-1211 Genève 4, Switzerland

Date submitted: 04 Dec 2004