On the X-ray-Problem in the Falicov-Kimball model in large dimensions at half-filling
GERD CZYCHOLL, FRITHJOF B. ANDERS, Department of Physics, Universität Bremen, P.O. Box 330 440, D-28334 Bremen, Germany
— The f-electron spectral function of the Falicov-Kimball model is calculated within the dynamical mean-field theory using the numerical renormalization group method as the impurity solver. Both the Bethe lattice and the hypercubic lattice are considered at half filling. For small U we obtain a single-peaked f-electron spectral function, which— for zero temperature— exhibits an algebraic (X-ray) singularity (|ω|−α) for ω → 0. The characteristic exponent α depends on the Coulomb (Hubbard) correlation U. This X-ray singularity cannot be observed when using alternative (Keldysh-based) many-body approaches. With increasing U α decreases and it vanishes for sufficiently large U when the f-electron spectral function develops a gap and a two-peak structure (metal-insulator transition).