Abstract Submitted for the MAR05 Meeting of The American Physical Society

Electron lattice coupling in HTSC cuprates: Evidence for polaron formation from unconventional isotope and strain effects ANNETTE BUSSMANN-HOLDER, Max-Planck-Institute for Solid State Research, HUGO KELLER, University of Zurich, ALAN R. BISHOP, Los Alamos National Laboratory, ARNDT SIMON, Max-Planck-Institutee for Solid State Research, ROMAN MICNAS, A. Mickiewicz University Poznan, K.A. MÜLLER, University of Zurich — Motivated by recent Andreev reflection experiments we use a two-component scenario to study lattice effects on the superconducting transition temperature T_c , the isotope exponent and strain effects in high temperature superconducting copper oxides. We find that the polaronic renormalization of the single particle energies substantially enhances T_c , can explain the strain induced enhancement of T_c and yields the unconventional isotope effect on the London penetration depth λ_L . The lattice distortion which causes these effects is identified as the Q_2 -type Jahn-Teller mode.

Annette Bussmann-Holder Max-Planck-Institute for Solid State Research

Date submitted: 05 Jan 2005 Electronic form version 1.4