Abstract Submitted for the MAR05 Meeting of The American Physical Society

Entanglement of Semiflexiible Polymers: A Brownian Dynamics Study SHRIRAM RAMANATHAN, DAVID MORSE, University of Minnesota — We report extensive Brownian dynamics simulations of very tightly entangled solutions of semiflexible rods, of length L comparable to their persistence length L_p , at concentrations comparable to those in recent experiments on Fd-virus and filamentous actin. We find a clear crossover with increasing number concentration cfrom a regime of loosely entangled rods, in which rotational diffusion is hindered by topological constraints but transverse bending fluctuations are not, to a tightly entangled regime in which bending fluctuations are also restricted, and can relax only by reptation along a wormlike tube. This crossover occurs at a dimensionless concentration $c^{**}L^3 \sim 500$ for chains with $L = L_p$. The tube radius R_e is found to depend upon c and L_p with the predicted scaling relation $R_e \propto c^{-3/5} L_p^{-1/5}$ for $c > c^{**}$. The dynamic modulus G(t) has been obtained from simulations of the relaxation of stress after a small amplitude step extension of the simulation unit cell. An elastic plateau in G(t) that is absent at lower concentrations also appears for $c \ge c^{**}$.

> David Morse University of Minnesota

Date submitted: 04 Dec 2004

Electronic form version 1.4