Abstract Submitted
for the MAR05 Meeting of
The American Physical Society

Non-perturbative behavior of the Pomeranchuk quantum phase transition of a nematic Fermi fluid

MICHAEL LAWLER, VICTORIA FERNANDEZ, EDUARDO FRADKIN, University of Illinois at Urbana-Champaign —
A nematic phase of an electron gas was predicted by Oganesyan et. al.[1] using a mean field approach by tuning the quadrupolar Landau parameter F_2 to the Pomeranchuk quantum critical point at $F_2 \sim -1$. We will present a study of the behavior at this QCP beyond the perturbative results of [1] using non- perturbative methods of higher dimensional bosonization. We extend the results on the Fermion residue calculated by Castro Neto and Fradkin for the Landau fermi liquid phase[2] to this case and present a calculation of the Fermion Green’s Function at the critical point.