Abstract Submitted for the MAR05 Meeting of The American Physical Society

Quasi-linear temperature dependence of the resistivity due to a nested Fermi surface PEDRO SCHLOTTMANN, Florida State University — Non-Fermi liquid (NFL) behavior is often found in the neighborhood of a quantum critical point (QCP). We consider a QCP arising from the nesting of Fermi surfaces of an electron pocket and a hole pocket separated by a wavevector \mathbf{Q} . The nesting gives rise to antiferromagnetism if the interaction between the carriers is repulsive. The order can gradually be suppressed by mismatching the nesting and a QCP is obtained as $T_N \rightarrow 0$. The specific heat γ coefficient and the magnetic susceptibility increase with the logarithm of the temperature as T is lowered.¹ The electrical resistivity and the linewidth of the neutron scattering quasi-elastic peak acquire a quasi-linear temperature dependence, as a consequence of the nesting of the Fermi surface.² This deviation from the usual Fermi liquid T^2 dependence is a manifestation of NFL behavior. The results are discussed in the context of NFL behavior observed in many heavy fermion compounds.³

Work supported by the National Science Foundation under grant No. DMR01-05431 and the Department of Energy under grant No. DE-FG02-98ER45797.

¹ P. Schlottmann, Phys. Rev. B **68**, 125105 (2003).

² A. Virosztek and J. Ruvalds, Phys. Rev. B **42**, 4064 (1990).

³ G.R. Stewart, Rev. Mod. Phys. **73**, 797 (2001).

Pedro Schlottmann Florida State University

Date submitted: 01 Dec 2004

Electronic form version 1.4