Abstract Submitted for the MAR05 Meeting of The American Physical Society

Dependence of direct-current-induced Si(111) Step Bunching on Initial Surface Miscut: Experiments and Simulations BRIAN GIBBONS, The Ohio State University, SYLVIA SCHAEPE, JONATHAN PELZ — DC heating of Si(111) surfaces can produce step bunching, with a complicated dependence on current direction and temperature. We have measured how the average step bunch height H_B and maximum bunch slope m_B depend on initial surface miscut θ_0 for $940 \degree C < T < 1090 \degree C$ [1] in order to evaluate possible parameter values for the conventional "sharp-step" model, and for a recently-proposed "2-region" (2R) model [2]. From 1D numerical simulations using realistic parameters for Si(111), we find that the sharp-step model can reproduce the observed scaling of H_B and m_B with θ_0 only if the ratio (Diffusion/attachment rate) $\equiv D_t/\kappa \sim 2-50$ nm, indicating largely "diffusion limited" adatom flow onto steps. With the 2R model (with an added step attachment barrier), bunching with "step-up" adatom flow can occur if the sticking probability is large (>~20%), and can match the observed scaling with θ_0 provided the adatom effective charge is also large (0.2e - 1e). Work supported by NSF Grant DMR-0074416. [1] Gibbons et al., Surf. Sci. Lett. in press. [2] Zhao et al., Phys. Rev. B **70**, 161303 (2004).

> Brian Gibbons The Ohio State University

Date submitted: 01 Dec 2004

Electronic form version 1.4