Abstract Submitted for the MAR05 Meeting of The American Physical Society

Penetration depth, symmetry breaking, and gap nodes in superconducting PrOs₄Sb₁₂¹ LEI SHU, D.E. MACLAUGHLIN, Univ. of Calif., Riverside, R.H. HEFFNER, G.D. MORRIS², Los Alamos Nat. Lab., O.O. BERNAL, Calif. State Univ., Los Angeles, F. CALLAGHAN, J.E. SONIER, Simon Fraser Univ., Burnaby, Canada, A. BOSSE³, J.E. ANDERSON, Univ. of Calif., Riverside, N.A. FREDERICK, W.M. YUHASZ, M.B. MAPLE, Univ. of Calif., San Diego — The vortex-state field distribution in the filled-skutterudite heavy-fermion superconductor $PrOs_4Sb_{12}$, in which there is evidence for time-reversal-symmetry (TRS) breaking, has been studied using transverse-field muon spin relaxation (TF- μ SR). The superconducting-state TF- μ SR relaxation rate $\sigma_s(T)$, a measure of the vortexlattice field distribution width, is found to be nearly constant below $\sim T_c/2$. Our results suggest $\lambda(T) \approx \text{const.}$ at low temperatures, consistent with a nonzero gap for quasiparticle excitations. Surface penetration-depth measurements in zero static field yield $\lambda(T) - \lambda(0) \propto T^2$, which suggests point nodes in the gap. A similar discrepancy is found in the TRS-breaking superconductor Sr₂RuO₄, but not in a number of non-TRS-breaking superconductors, conventional and unconventional.

¹Supported by U.S. NSF, U.S. DOE, and Canadian NSERC and CIAR. ²Permanent address TRIUMF, Vancouver, Canada ³Present address TU Braunschweig, Germany

> D.E. MacLaughlin University of California, Riverside

Date submitted: 22 Dec 2004

Electronic form version 1.4