Coherent Spin Waves in Thin-Film GaMnAs D. M. WANG, Y. H. REN, R. MERLIN, University of Michigan, K. DZIATKOWSKI, X. LIU, J. K. FURDYNA, University of Notre Dame, M. GRIMSDITCH, Argonne National Lab — We report on the observation of coherent oscillations associated with standing spin waves in thin films of the ferromagnetic semiconductor GaMnAs. The oscillations were observed in differential magnetic Kerr measurements using a standard pump-probe setup. Subpicosecond pump pulses from a Ti: sapphire laser induce a coherent precession of the magnetization which is detected by measuring the rotation of the polarization of the delayed probe pulses. The magnetic anisotropy and spin stiffness constants \(D \) were determined from the magnetic-field dependence of the spin-wave frequencies. We obtain \(D = 0.7 \pm 0.1 \times 10^{-13} \text{T} \cdot \text{cm}^2 \) for two as-grown samples \(T_C = 65 \text{ K} \) and \(D = 3.5 \pm 0.5 \times 10^{-13} \text{T} \cdot \text{cm}^2 \) for an annealed sample with \(T_C = 80 \text{ K} \).