Abstract Submitted for the MAR05 Meeting of The American Physical Society

Observation of Spin-Spin Interaction in InSb Quantum Wells R.C. MEYER, T. KASTURIARACHCHI, X.H. ZHANG, N. GOEL, S.J. CHUNG, R.E. DOEZEMA, M.B. SANTOS, University of Oklahoma, Y.J. WANG, National High Magnetic Field Laboratory, Florida State University — For 2D electron systems in InSb, the energy of spin-conserving transitions between neighboring Landau levels (LLs) depends on spin orientation. The spin up transition will have a higher energy than the spin down transition due to the non-parabolicity of the InSb conduction band. These spin-resolved cyclotron resonance features allow us to probe the spin dependence of avoided-level crossings between LLs associated with different subbands. Previous studies in GaAs, where cyclotron resonance peaks were not spin resolved, demonstrated that the anti-crossing energy gaps depend linearly on the tilt of the magnetic field. In our spin-resolved studies, we do observe a linear dependence for anti-crossings between levels with the same spin. However, the strength of this dependence is different for the two spin orientations. More notably, we observe anti-crossings between levels with opposite spin, as would be expected for a spin-spin interaction. The gap for these opposite-spin crossings is essentially tilt-angle independent. None of the observed spin dependencies are expected from the conventional theory behind subband LL anti-crossings. Although spin-orbit effects are strong in InSb, the origin of the observed spin dependencies has not yet been definitively identified. This work is supported by the NSF under Grants No. DMR-0080054 and DMR-0209371.

> Michael Santos University of Oklahoma

Date submitted: 01 Dec 2004

Electronic form version 1.4