The onset of jamming as the sudden emergence of an infinite k-core cluster1

JENNIFER SCHWARZ, University of Pennsylvania

A theory is constructed to describe the zero-temperature jamming transition as the density of repulsive soft spheres is increased. Local mechanical stability imposes a constraint on the minimum number of bonds per particle; we argue that this constraint suggests an analogy to k-core percolation. The latter model can be solved exactly on the Bethe lattice, and the resulting transition has a mixed first-order/continuous character. The exponents characterizing the continuous part appear to be the same as for the jamming transition. Finally, numerical simulations suggest that in finite dimensions the k-core transition can be discontinuous.

1Work done in collaboration with Andrea Liu and Lincoln Chayes