Abstract Submitted for the MAR05 Meeting of The American Physical Society

Scaling roughness and transport properties correlation in manganite thin films¹ JUAN RAMÍREZ, MARIA ELENA GÓMEZ, WILSON LÓPERA, PEDRO PRIETO, Departamento de Física, Universidad del Valle, GRUPO DE PELíCULAS DELGADAS TEAM — A scaling roughness study was done on digitized Atomic Force Microscope (AFM) images of La_{2/3}Ca_{1/3}MnO₃ thin films grown on (100) oriented SrTiO₃ substrates. The films were grown via sputtering technique at high oxygen pressures (mbar) and at substrate temperatures of 850 °C. The films were characterized by resistivity measurements to determine the Curie temperature by the transition temperature from insulating to metallic phase. From digitized AFM-images and by using a specific self-designed algorithm, we statistically study the scaling roughness properties. We obtain quantitative values for the roughness parameters: interface width (σ) , correlation length (ξ) , and roughness exponent (α). The calculated α -values are 0.85 \pm 0.05, indicating a highly oriented growth mechanism. We analyzed the dependence of layer thickness (d) and image size (D) with the parameters describing roughness and founded that Curie-Temperature is correlated with the lateral correlation length whereas there is no correlation with the saturation roughness.

¹Work supported by Colciencias, project No 11060511458 CT-046-2002.

Juan Ramírez Departamento de Física, Universidad del Valle A.A. 25360 Cali, Colombia

Date submitted: 05 Dec 2004 Electronic form version 1.4