Superflow in Solid 4He WAYNE SASLOW, Texas A&M University — Kim and Chan have recently observed Non-Classical Rotational Inertia (NCRI) for solid 4He in Vycor glass, porous gold, and bulk. Using a microscopic theory where each atom has the same local superfluid velocity (which depends on the microscopic atomic mass density), we show that their low T value of the superfluid fraction, $\rho_s/\rho_0 \approx 0.015$, is consistent with what is known of atomic delocalization in this system. In the macroscopic theory, we explicitly include a lattice mass density ρ_L distinct from the normal fluid density ρ_n, thus making the superfluid hydrodynamics consistent with Galilean transformations, which implies that $\rho_0 = \rho_s + \rho_n + \rho_L$. We also show that $\rho_L(T) = \rho_0(T) - \rho^*_s(T)$, where $\rho_0(T)$ is the average mass density and $\rho^*_s(T)$ is computed from the microscopic mass density. This added complexity makes determination of ρ_n/ρ_0 from the measured ρ_s/ρ_0 non-trivial, although an excitation energy of about 0.35 K is relevant as ρ_n/ρ_0 rises from its low temperature value of zero. The macroscopic phase inferred from the observation of NCRI suggests quantum vortices, whose cores must reside between the lattice sites.

Wayne Saslow
Texas A&M University

Date submitted: 01 Dec 2004

Electronic form version 1.4