Abstract Submitted for the MAR05 Meeting of The American Physical Society

Anomalous Hall Resistivity and Magnetization of $\operatorname{Sm}_{1-x}\operatorname{Gd}_x\operatorname{Al}_2$ Y. Y. XUE, F. CHEN, Y. Q. WANG, Y. Y. SUN, R. L. MENG, C. W. CHU¹, Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204-5002 — Both the magnetization M and the anomalous Hall resistivity, ρ_{xy}^{an} , of $\operatorname{Sm}_{1-x}\operatorname{Gd}_x\operatorname{Al}_2$ with 0 < x < 0.02 were measured. Similar to the M, the ρ_{xy}^{an} can be separated into a ferromagnetic component ρ_{xy}^{FM} and a Van Vlecklike contribution ρ_{xy}^{VV} . When the Van Vleck susceptibility appears to be independent of the spin ordering, however, the ρ_{xy}^{VV} changes significantly through the magnetic transition, which may be understood within the chirality models. A very sharp sign change of ρ_{xy}^{FM} , which is a rough measure of the ordered spins, was observed for the magnetic fields above 0.5 T at a compensation temperature T_{comp} where the M dips near the minimum in the field-cooling procedure. On the other hand, the amplitude $|\rho_{xy}^{FM}|$ shows no noticeable change across T_{comp} and is insensitive to the Gd-doping. The spin contribution to the M, therefore, is the same across T_{comp} and changes only smoothly with the doping.

¹Also at: Lawrence Berkeley National Laboratory, Hong Kong University of Science and Technology

> Yuyi Xue TcSAM, University of Houston, Houston, TX 77204-5002

Date submitted: 01 Dec 2004

Electronic form version 1.4