Spin Dynamics of Charged Colloidal Quantum Dots1 N.P. STERN,
M. POGGIO, M.H. BARTL, E.L. HU, G.D. STUCKY, D.D. AWSCHALOM, Center
for Spintronics and Quantum Computation, University of California, Santa Barbara,
CA 93106 — Colloidal semiconductor quantum dots are promising structures for
controlling spin phenomena because of their highly size- tunable physical properties,
ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Re-
cent experiments have succeeded in controlling the charging of the lowest electronic
state of colloidal quantum dots2. Here we use time-resolved Faraday rotation
measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe
quantum dot films in both a charged and uncharged state at room temperature.
The charging of the film is controlled by applying a voltage in an electrochemical
cell and is confirmed by absorbance measurements. Significant changes in the spin
precession are observed upon charging, reflecting the voltage- controlled electron
occupation of the quantum dot states and filling of surface states.

1Work supported by DARPA, NSF, and the Fannie and John Hertz Foundation.
2C. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, \textit{J. Phys. Chem B}

Nathaniel Stern
Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106

Date submitted: 01 Dec 2004

Electronic form version 1.4