Bulk magnetic hardening in Cu-added (SmCo5)1-x(Sm2Co17)x cast alloys

GEORGE HADJIPANAYIS, ALEXANDER GABAY, YONG ZHANG, MELANIA MARINESCU, KYRIAKOS CHRISTODOULIDES, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 — In attempt to establish a possible link between the magnetic hardening in Sm(Co,Cu)5 magnets and the commercial "2:17" magnets, we have investigated a series of homogenized ternary Sm-Co-Cu alloys with composition between Sm(Co,Cu)5 and Sm2Co17. The coercivity of the alloys with x < 0.75 can be increased by isothermal aging without separation into 1:5 and 2:17 phases. The increase in coercivity is accompanied by an increase in the Curie temperature. A similar effect of low-temperature aging has also been observed in Sm-Co-Ni, Sm-Co-Fe-Cu and Pr-Co-Fe-Cu alloys. A different pattern of magnetic hardening can be observed in the alloys with x > 0 which were slowly cooled from 800 to 350 °C. In this case, the initial hexagonal structure transforms into the cellular structure of the 1:5 and 2:17 (rhomb.) phases. In the alloy with x = 0.25, the two types of magnetic hardening may lead to the same room temperature coercivity despite the very different microstructures. The correlation between the observed microstructures and coercivity will be discussed.

1This work was supported by the Defense Advanced Research Projects Agency (DARPA)