Abstract Submitted for the MAR05 Meeting of The American Physical Society

High Resolution NMR ¹⁵N and ³¹P NMR Of Antiferroelectric Phase Transition in Ammonium Dihydrogen Arsenate and Ammonium Dihydrogen Phosphate OZGE GUNAYDIN-SEN, RANDALL ACHEY, RIQIANG FU, NARESH DALAL, Florida State University and National High Magnetic Field Laboratory — Natural abundance ¹⁵N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH₄H₂AsO₄ (ADA) $(T_N \sim 216K)$ and of NH₄H₂PO₄ (ADP) (148K), with a focus on the role of the NH_4^+ ion. Isotropic chemical shift of ${}^{15}N$ for ADA exhibits an almost linear temperature dependence to within $T_N \pm 1K$, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the T_N . The sharp anomaly around T_N implies that the NH_4^+ ions undergo a displacive transition, whereas the protons in the $O-H\cdots O$ bonds undergo an order-disorder transition. The ¹⁵N data thus support a mixed order-disorder-displacive mechanism for this transition. The ¹⁵N data on ADP exhibit somewhat different behavior. ³¹P CPMAS measurements will also be presented and discussed in terms of the above model.

> Ozge Gunaydin-Sen Florida State University and National High Magnetic Field Laboratory

Date submitted: 06 Dec 2004

Electronic form version 1.4