Abstract Submitted for the MAR05 Meeting of The American Physical Society

Magnetization study on Ferro-Antiferromagnetic Superlattices based on Manganites of the type $La_x Ca_{1-x} MnO_3$ GLORIA CAMPILLO, AXEL HOFFMANN, Argonne National Laboratory, PEDRO PRIETO, MARIA ELENA GOMEZ, Universidad del Valle, UNIVERSIDAD DEL VALLE, DE-PARTMENT OF PHYSICS, CALI, COLOMBIA TEAM, ARGONNE NATIONAL LABORATORY, MATERIALS SCIENCE DIVISION TEAM — Magnetization measurements were done on a series of La_{2/3}Ca_{1/3}MnO₃ ferromagnetic (F) / $La_{1/3}Ca_{2/3}MnO_3$ antiferromagnetic (AF) superlattices, which were prepared with a constant thickness of 3.9 nm for the F layer and thickness of the AF layer was varied in the range $3.9nm \leq t_{AF} \leq 15.6nm$. We observe from magnetothermal zero field cooling (ZFC) and field cooling (FC) curves, a bifurcation temperature T_{bif} , around 180 K identical for all samples. However, the F Curie temperature T_C changes with AF layer thickness. Hysteretic loop measurements after field cooling (FC), from room temperature to 5 K exhibit an exchange bias loop shift, H_{ex} , which persists up to temperatures around the Nel temperature T_N , (150 K) of the AF layer. The temperature parameter T_0 , derived from an exponential fit of H_{ex} , increases with t_{AF} up to approximately 32 K, which is well below the blocking temperature $T_B \approx T_N$. This result can be associated with a continuous distribution of T_B caused by inhomogeneities at the interfaces, and suggests that AF/F interface-effects are of critical importance for exchange- biasing in La-Ca-Mn-O based multilayers. This work was supported by COLCIENCIAS project 1106-05-11458 CT-046-2002 and US DOE-BES.

> Maria Elena Gómez Universidad del Valle

Date submitted: 22 Dec 2004

Electronic form version 1.4