Scaling of thermal resistivity of 4He in restricted geometries

CHONGSHAN ZHANG, D. P. LANDAU, CENTER FOR SIMULATIONAL PHYSICS, UNIVERSITY OF GEORGIA, ATHENS, GA TEAM — The thermal resistivity and its scaling function in quasi-2D 4He systems are studied by Monte Carlo and spin-dynamics simulation of the classical 3D XY model on $L \times L \times H$ lattices with $L \gg H$. Open boundary conditions are applied along the H direction and periodic boundary conditions along the L directions. A hybrid Monte Carlo algorithm is adopted to efficiently deal with the critical slowing down 1. Fourth-order Suzuki-Trotter decomposition of exponential operators is used to solve numerically the coupled equation of motion for each spin. The thermal conductivity is calculated by a dynamic current-current correlation function. Our results are consistent with a universal scaling function $F(X) = (L/\xi_0)^{\pi/\nu}(\rho/\rho_0)$, $X = (L/\xi_0)^{1/\nu}t$ using known values of the critical exponents π and ν ($\rho = \rho_0 t^{-\pi}$ is the thermal resistivity, and $\xi = \xi_0 t^{-\nu}$ is the correlation length). The thermal resistivity scaling function agrees well with the available experimental results 2 for slabs using the temperature scale and thermal resistivity scale as free fitting parameters.

*Research supported by NASA

2Experimental data provided by G. Ahlers, S. Jerebers, Y. Liu and F. C. Liu

Chongshan Zhang

Date submitted: 01 Dec 2004

Electronic form version 1.4