Abstract Submitted
for the MAR05 Meeting of
The American Physical Society

Functional gradients with controlled steepness on self-assembled aminosilane monolayers

YING ZOU, STEVE STORY, SHANE HARTON, HARALD ADE, Department of Physics, North Carolina State University, Raleigh, NC 27695 — A high throughput, and cost-effective way to fabricate functional gradients of controlled steepness (up to $\sim 10\mu m$ for full gradient) on organic self assembled monolayer (SAM) films has been achieved. The exposure of a aminopropyltrimethoxysilane(APTES) film prepared on a SiO$_x$ substrate to ultraviolet (UV) light, with and without the creation of ozone, is controlled by a movable shutter that shadows the sample from the UV source. The shutter to the substrate spacing sets a lower limit to the steepness of the gradient, whereby both the diffusion field of ozone and the divergence of incident UV light are responsible. Through the attachment of 0.26 μm sized polystyrene (PS, carboxyl-group ended) microspheres (MSs) onto the exposed APTES films via chemical reaction in an activated MS suspension, the fabricated gradient can be visualized directly with a visible light microscope operated in Normarsky interference mode. The short MS density-saturation time observed suggests that covalent bonding is established between the MSs and the APTES film through the reaction of carboxyl- with amine- groups [1]. The use of a linear, variable shutter speed in conjunction with the saturation time allows for the variation and control of the gradients steepness. Reference: [1] S. Herrwerth et al Langmuir 19(2003) 1880-1887

Ying Zou
Department of Physics, North Carolina State University, Raleigh, NC27695

Date submitted: 13 Dec 2004

Electronic form version 1.4