Platelet self-assembly of a tetrablock copolymer in pure water

ENRIQUE GOMEZ, TIMOTHY RAPPL, University of California, Berkeley, VIVEK AGARWAL, ARIJIT BOSE, University of Rhode Island, CARLOS MARQUES, LDFC, NITASH BALSARA, University of California, Berkeley and Lawrence Berkeley National Laboratory — An amphiphilic tetrablock copolymer was synthesized via anionic polymerization, selective hydrogenation and sulfonation to create an A-B-C-A polymer where the hydrophilic ends are poly(styrene sulfonate) and the middle blocks are incompatible poly (methyl butylene) and poly (ethyl ethylene). The aggregation behavior of these polymers in water was studied using dynamic and static light scattering as well as light and electron microscopy. Both scattering and direct imaging experiments are consistent with monodisperse ($s = 0.14$) monolayer platelets with radii of 147 nm at 45 C, while at temperatures below 38 C we find coexistence of the platelets with micelles.

Enrique Gomez
University of California, Berkeley

Date submitted: 01 Dec 2004