Hysteretic resistance spikes in magnetic 2DEGs1 J. CARLOS EGUES, HENRIQUE FREIRE, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo — We use spin-density-functional theory to study recently reported hysteretic magnetoresistance ρ_{xx} spikes in Mn-based 2D electron gases [Jaroszyński \textit{et al.} Phys. Rev. Lett. \textbf{89}, 266802 (2002)]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum-Hall-ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from \textit{distinct} symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in ρ_{xx}, we predict \textit{hysteretic dips} in the Hall resistance ρ_{xy}. Finally, we note that our theory \textit{does not} include domain walls. While not ruling out the importance of these, our quantitative agreement with the experiments does highlight the relevance of spin-dependent exchange-correlation effects in magnetic 2DEGs.

1FAPESP

J. Carlos Egues
Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo

Date submitted: 06 Dec 2004
electronic form version 1.4