Bloch States of the Interface Phase CURT BILLMAN, Oak Ridge National Laboratory, FRED WALKER1, University of Tennessee, MARCO BUONGIORNO-NARDELLI2, North Carolina State University, RODNEY MCKEE, Oak Ridge National Laboratory — Electrical conductance and capacitance measurements of metal oxide semiconductor devices have revealed the existence of Bloch states that are associated with the interface phase that is formed between commensurate Ba\textsubscript{72}Sr\textsubscript{28}O and Si(001). Conductance measurements of the interface states show loss peaks that can be modeled using a single relaxation time in contrast to the distribution of relaxation times required to reproduce conductance measurements of interface traps at the amorphous SiO\textsubscript{2} / Si interface. The measured magnitude, which is on the order of 4x1013 eV−1 cm−2 and the character of the interface phase Bloch state (IPBS) density is consistent with local density approximation (LDA) calculations using a physical structure based on a one mono-atomic layer silicide. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.

1Oak Ridge National Laboratory

2Oak Ridge National Laboratory

Fred Walker
University of Tennessee

Date submitted: 01 Dec 2004

Electronic form version 1.4