Length Scales of Chaotic patterns near the onset of of Electro-convection in the Nematic Liquid Crystal I52

XIAOCHAO XU, GUENTER AHLERS, Dept. of Physics and iQUEST, University of California, Santa Barbara — We report experimental results for Electroconvection of the nematic Liquid Crystal I52 with planar alignment and a conductivity of $1.0 \times 10^{-8} \ (\Omega \text{m})^{-1}$. The cell spacing was $19.4 \mu \text{m}$ and the driving frequency was 25.0 Hz. Spatio-temporal chaos consisting of a superposition of zig and zag oblique rolls evolved by means of a supercritical Hopf bifurcation from the uniform conduction state. For small $\epsilon \equiv V^2/V_0^2 - 1$, we measured the correlation lengths of the envelopes of both zig and zag patterns. These lengths could be fit to a power law in ϵ with an exponent smaller than that predicted from amplitude equations. The disagreement with theory is similar to that found previously for domain chaos in rotating Rayleigh-Benard convection.

1Work supported by NSF Grant DMR02-43336.

Xiaochao Xu
Dept. of Physics and iQUEST, University of California, Santa Barbara

Date submitted: 22 Mar 2013

Electronic form version 1.4