Magnetic Properties of CoFe2O4 Nanopillars

HAIMEI ZHENG, RAJESH CHOPDEKAR, YAYOI TAKAMURA, T. ZHAO, Y. SUZUKI, R. RAMESH, University of California, Berkeley, F. ZAVALICHE, L. MOHADDES-ARDAHILI, S. SHINDE, S. OGALE, Univeristy of Maryland, College Park, D. SCHLOM, Pennsylvania State University — Ferrimagnetic CoFe2O4 spontaneously forms nanopillars embedded in a BaTiO3 or BiFeO3 matrix during thin film growth by pulsed laser deposition. Such thin film nanostructures show three dimensional heteroepitaxy. All the films have a large uniaxial magnetic anisotropy with an easy axis normal to the film plane. It is calculated that stress anisotropy is the main contribution to the anisotropy field. We studied the magnetic behavior of the CoFe2O4 nanopillars formed at different growth temperatures, with different film thickness and on various substrates.

This work is supported by an ONR MURI program at UC Berkeley