Abstract Submitted for the MAR05 Meeting of The American Physical Society

Magnetic Properties of CoFe2O4 Nanopillars¹ HAIMEI ZHENG, RAJESH CHOPDEKAR, YAYOI TAKAMURA, T. ZHAO, Y. SUZUKI, R. RAMESH, Univeristy of California, Berkeley, F. ZAVALICHE, L. MOHADDES-ARDAHILI, S. SHINDE, S. OGALE, University of Maryland, College Park, D. SCHLOM, Pennsylvania State University — Ferrimagnetic CoFe₂O₄ spontaneously forms nanopillars embedded in a BaTiO₃ or BiFeO₃ matrix during thin film growth by pulsed laser deposition. Such thin film nanostructures show three dimensional heteroepitaxy. All the films have a large uniaxial magnetic anisotropy with an easy axis normal to the film plane. It is calculated that stress anisotropy is the main contribution to the anisotropy field. We studied the magnetic behavior of the CoFe₂O₄ nanopillars formed at different growth temperatures, with different film thickness and on various substrates.

¹This work is supported by an ONR MURI program at UC Berkeley

Haimei Zheng

Date submitted: 01 Dec 2004

Electronic form version 1.4