Theoretical Study of Stabilization of Fullerene-like Silicon Cages

AJIT HIRA, Northern NM Community College, NICHOLE MOYA-LEYBA, Northern NM Community College, DANIEL BULNES, Northern NM Community College — We extend our work on fullerenes\(^1\), by exploring the stabilization of fullerene-like silicon cages through intercalation of carbon atoms. \textit{Ab initio} theoretical techniques are used to derive the physical and chemical properties of various \((\text{Si}_{60})_m\text{C}_n\) systems \((m = 1-3, n = 1-10)\). The first phase of our investigation focuses on endohedral and exohedral complexes of a single \text{Si}_{60}\text{withC}_n\) clusters. Electron correlation effects are incorporated using both Many Body Perturbation Theory (MBPT) and Density Functional Theories (DFT). The second phase of the investigation examines the interactions of the fullerene-like silicon ”super molecules” with the small carbon clusters. The properties discussed will include bondlengths, ground-state energies, optimum absorbate distances, dissociation channels, and dissociation energies are presented. Possibilities exist for applications in silicon-based electronics at the nano scale.