Abstract Submitted for the MAR05 Meeting of The American Physical Society

Theoretical Study of Stabilization of Fullerene-like Silicon Cages AJIT HIRA, Northern NM Community College, NICHOLE MOYA-LEYBA, Northern NM Community College, DANIEL BULNES, Northern NM Community College — We extend our work on fullerenes¹, by exploring the stabilization of fullerene-like silicon cages through intercalation of carbon atoms. Ab initio theoretical techniques are used to derive the physical and chemical properties of various $(Si_{60})_m C_n$ systems (m = 1-3, n = 1-10). The first phase of our investigation focuses on endohedral and exohedral complexes of a single Si_{60} with C_n clusters. Electron correlation effects are incorporated using both Many Body Perturbation Theory (MBPT) and Density Functional Theories (DFT). The second phase of the investigation examines the interactions of the fullerene-like silicon "super molecules" with the small carbon clusters. The properties discussed will include bondlengths, ground-state energies, optimum absorbate distances, dissociation channels, and dissociation energies are presented. Possibilities exist for applications in silicon-based electronics at the nano scale.

1. A. S. Hira and A. K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996).

Ajit Hira Northern NM Community College

Date submitted: 01 Dec 2004

Electronic form version 1.4