Mesophase formation of block copolymer in cylindrical nanopore

JUNE HUH, School of Materials Science and Engineering, Seoul National University, WON HO JO, School of Materials Science and Engineering, Seoul National University, KYUSOON SHIN, Polymer Science and Engineering Department, University of Massachusetts, Amherst, HONGQI XIANG, Polymer Science and Engineering Department, University of Massachusetts, Amherst, JIUN-TAI CHEN, Polymer Science and Engineering Department, University of Massachusetts, Amherst, THOMAS P. RUSSELL, Polymer Science and Engineering Department, University of Massachusetts, Amherst — We investigate the influence of the confinement on the mesophase formation of diblock copolymer caged in a cylindrical pore in which the surface of the pore preferentially attracts one of the blocks. Using cell dynamics simulation, we construct phase maps as a function of the composition of diblock copolymer (f) and the pore diameter (D) relative to the period at bulk (L_o). Depending on f and D/L_o, we observe a variety of confinement-induced mesophases ranging from a simple dartboard-like structure to more complicated structures involving various forms of helices or doughnuts. We also find that the creation of a new central domain of the layered structure in the cylindrical pore occurs at a critical value of D/L_o larger than the critical value for the layered structure under the flat confinement, indicating that the block copolymers under curved confinement afford to be more stretched than that under flat confinement. These results are compared with experimental observations.

June Huh
School of Materials Science and Engineering, Seoul National University

Date submitted: 01 Dec 2004