Abstract Submitted for the MAR05 Meeting of The American Physical Society

Energies of $4f^N$ and $4f^{N-1}5d$ States Relative to Host Bands in Rare-earth-doped Fluorides¹ C.W. THIEL, A. COLLOMBET, R.L. CONE, Montana State University, M.-F. JOUBERT, LPCML, Universite Claude Bernard de Lyon, A. TKACHUK, All-Russia Research Center, Vavilov State Optical Institute — Energies of 4f^N states relative to crystal band states were measured for rare-earth ions in the optical host materials LiYF₄, Na_{0.4}Y_{0.6}F_{2.2}, and LaF₃ using x-ray photoemission spectroscopy. Spectra were modeled to determine the valence band maximum and 4felectron binding energies in each material. These results were combined with $4f^N$ to $4f^{N-1}5d$ transition energies to determine 5d binding energies for the lowest levels of excited $4f^{N-1}5d$ configurations. While $4f^N$ ground-state energies vary within several eV of the valence band maximum for different rare-earth ions in each host, the lowest $4f^{N-1}5d$ states have similar energies and are several eV below the bottom of the conduction band. A simple model accurately described $4f^N$ and $4f^{N-1}5d$ binding energies across the entire series of rare-earth ions. These results improve the understanding of optical materials for lasers, phosphors, and spectral hole burning applications for optical signal processing and data storage.

¹Research supported by AFRL and MBRCT.

Charles Thiel Montana State University

Date submitted: 01 Dec 2004 Electronic form version 1.4