Spin Charging Sequence in Laterally-Coupled Vertical Triple Quantum Dots
JIHAN KIM, DMITRIY MELNIKOV, JEAN-PIERRE LEBURTON, Beckman Institute for Advanced Science & Technology and Department of Electrical and Computer Engineering, Univ. of Illinois at Urbana-Champaign, GUY AUSTING, Institute for Microstructural Sciences National Research Council of Canada — We use three-dimensional self-consistent Kohn Sham’s Equations coupled with Poisson’s Equation to investigate the behavior of a few (N=2,3 and 4) electron system in three co-linear and laterally-coupled quantum dots made with the vertical technology. Under the influence of the central dot gate, we observe the relocation of the ground-state electrons from the central dot to the side dots during both the charging regime (∆N=1)and the Coulomb blockade regime (∆N=0). With varying gate voltage, the evolution of the single-particle wavefunctions for N=3 and 4 electrons is also accompanied by changes in the spin states in the case of symmetry breaking in the dot confinement. We discuss various charging scenarios as a function of the different gate bias configurations as well as the possibility to achieve super-exchange with this technology.