Measurement of strain birefringence in isotropic and liquid crystal elastomers and ferrogels

CHRIS BAILEY, Liquid Crystal Institute, Kent State University, Kent, OH, USA, ANTONIO M. FIGUEIREDO NETO, Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil, MARIA H. GODINHO, Faculdade de Ciências e Tecnologia e CENIMAT, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal, PETER PALFFY-MUHORAY, TIBOR TOTH-KATONA, Liquid Crystal Institute, Kent State University, Kent, OH, USA, LIQUID CRYSTAL INSTITUTE, KENT STATE UNIVERSITY, KENT, OH, USA COLLABORATION, INSTITUTO DE FÍSICA, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, SP, BRAZIL COLLABORATION, FACULDADE DE CIENCIAS E TECNOLOGIA E CENIMAT, UNIVERSIDADE NOVA DE LISBOA, QUINTA DA TORRE, CAPARICA COLLABORATION — We have constructed an apparatus for the sensitive measurement of strain induced birefringence in elastomer samples. Rather than rotating the sample, we rotate the polarization of the probe beam while applying stress to the sample, and analyze the transmitted intensity. We have studied the strain induced birefringence in isotropic elastomers, nematic liquid crystal elastomers, and elastomers with dissolved ferrofluid particles. We present the results of our measurements, and interpret them in terms of the stress-optic theorem, and the coupling between orientational order parameters and strain.

Peter Palffy-Muhoray
Liquid Crystal Institute, Kent State University, Kent, OH, USA

Date submitted: 07 Dec 2004