Abstract Submitted for the MAR05 Meeting of The American Physical Society

Fourier-Transformed Inelastic STM Tunneling into High-Temperature JIAN-XIN ZHU, A.V. BALATSKY, Theoretical Division, Los Alamos National Laboratory — There are heightened interest in relating the STM observations with other spectroscopy measurements with momentum resolution in high- T_c cuprates. We have proposed earlier that STM can be used to detect the 41 meV (π, π) mode as observed in neutron scattering experiments. Recent ARPES on optimally doped Bi₂Sr₂Ca_{0.92}Y_{0.08}Cu₂O_{8+ $\delta}$} suggests an anisotropic electronphonon coupling. Here we address the role of these phonons (O B1g mode and in-plane Cu-O breathing mode) and the Fourier-transformed STM features they might generate in the local density of states. We also look into the effect of a distributed random potential on these features. The Fourier-transformed inelastic electron tunneling spectrocopy STM would allow one to extract the Eliashberg function in both frequency and momentum space, if successful.

> Jian-Xin Zhu Theoretical Division, Los Alamos National Laboratory

Date submitted: 23 Dec 2004

Electronic form version 1.4