Measurement induced dephasing of a superconducting qubit strongly coupled to a resonator

JAY GAMBITTA, ALEXANDRE BLAIS, Department of Physics, Yale University, DAVID SCHUSTER, ANDREAS WALL-RAFF, Department of Applied Physics, Yale University, REN-SHOU HUANG, Ames Lab, JOHANNES MAJER, LUIGI FRUNZIO, Department of Applied Physics, Yale University, STEVEN GIRVIN, Department of Physics, Yale University, ROBERT SCHOELKOPF, Department of Applied Physics, Yale University — Recently, the solid state equivalent of a cavity QED system has been experimentally observed using a Cooper pair box as the artificial atom (qubit) and a transmission line resonator as the cavity [1]. This system is a good candidate for quantum computation as, in the dispersive limit, quantum control and readout can be achieved by multiplexing RF pulses [2]. In this talk only the readout scheme will be considered, in particular experimental [3] and theoretical results for the measurement induced dephasing will be presented.


Alexandre Blais
Department of Physics, Yale University

Date submitted: 07 Dec 2004

Electronic form version 1.4