Intermittency in two dimensional turbulence

YONGGUN JUN, JIE ZHANG, XIAO-LUN WU — Intermittency of the velocity difference δv_l and the energy dissipation rate ε_l on scale of l is investigated on the inverse energy cascade range in the forced 2D turbulent flow. Measurements are performed on the freely-suspended horizontal soap film using particle tracking velocimetry. We use the multifractal method to analyze the energy dissipation rate ε_l and calculate the scaling exponent τ_q and the intermittency parameter μ_{ε}. From high order structure function $\langle (\delta v)^{p} \rangle \sim l^{\zeta_{p}}$, We obtain the scaling exponent ζ_{p} with integer p and estimate the intermittency parameter μ_{v}. The Komogorov refined hypothesis suggests the relation $\zeta_{p} = \frac{\tau_{p/3}}{3} + \frac{p}{3}$. This relation agrees with the experimental data up to $p = 5$. The deviation for larger p may be due to linear damping in the system that also contributes to the energy flux on large scales.

Yonggun Jun
Physics and Astronomy, University of Pittsburgh

Date submitted: 07 Dec 2004