Abstract Submitted for the MAR05 Meeting of The American Physical Society

Quantum criticality in the Itinerant Ferromagnets $\mathbf{Zr}_{1-x}\mathbf{Nb}_x\mathbf{Zn}_2^1$ D. SOKOLOV, M.C. ARONSON, Department of Physics, The University of Michigan, Z. FISK, Department of Physics, University of California, Davis — We report the results of magnetization measurements performed on the family itinerant ferromagnets $\mathbf{Zr}_{1-x}\mathbf{Nb}_x\mathbf{Zn}_2$, $(0 \le x \le 0.14)$. Nb doping reduces the moment \mathbf{M}_0 and also the Curie temperature \mathbf{T}_c , which simultaneously disappear at the critical Nb concentration $\mathbf{x}_c=0.084$. We find that $\mathbf{T}_c \propto (\mathbf{x}\cdot\mathbf{x}_c)^{3/4}$, as predicted for a 3d ferromagnet, while $\mathbf{M}_0 \propto \mathbf{T}_c$ (x), as expected for a Stoner ferromagnet. For all Nb concentrations and for temperatures which approach 100 K, the extrapolated zero field susceptibility χ can be expressed with a modified Curie Weiss expression $\chi = C/(T^{\gamma} + \theta)$. θ is finite in the paramagnetic state (x>x_C), but vanishes as the system becomes critical at $\mathbf{x}=\mathbf{x}_C$, evidenced by the T=0 divergence of χ in this system. We find that γ is near one in paramagnetic regimes for $\mathbf{x}<\mathbf{x}_c$ (T>T_c), and for $\mathbf{x} \gg \mathbf{x}_c$. However, γ is substantially enhanced in the vicinity of the quantum critical point (0.08<x<0.09), indicating the breakdown of the conventional Stoner theory.

¹Work at University of Michigan performed with the support of NSF-DMR-9977300 grant.

Dmitriy Sokolov Department of Physics, The University of Michigan

Date submitted: 27 Mar 2013

Electronic form version 1.4