Multi-Configuration Time-Dependent Hartree-Fock theory applied to quantum dots CARLOS DESTEFANI, ALEXANDER PEGARKOV, CHRIS MCDONALD, THOMAS BRABEC, University of Ottawa, PAWEL HAWRYLAK, Institute for Microstructural Sciences, NRC — The Multi-Configuration Time-Dependent Hartree-Fock method (MCTDHF) is a tool that can be used to study the electron dynamics of several multielectronic systems under strong laser fields. It is based on a variational principle applied to the time-dependent Schrödinger equation, where the many-particle ansatz wavefunction is a sum over configurations, with both coefficients and single-particle functions being time-dependent and optimized at each time step. In this way, electron correlation is taken into account and a faster convergence within a smaller expansion is obtained when compared to other mean-field theories. This method yields two sets of coupled non-linear differential equations to be solved by a certain integration scheme. These so-called working equations are propagated from a given initial state, yielding the wavefunction under the influence of the external field and allowing the study of the multielectronic dynamics under the laser pulse. As a first application of the MCTDHF theory, we analyze the multielectronic dynamics of isolated and coupled harmonic gated quantum dots driven by an intense laser field.

Carlos Destefani
University of Ottawa

Date submitted: 01 Dec 2004