Abstract Submitted for the MAR05 Meeting of The American Physical Society

Magnetic properties of a molecule-based Fe[TCNE]2 magnet¹ KONSTANTIN POKHODNYA, Ohio State University/University of Utah, ARTHUR J. EPSTEIN, Ohio State University, MICHAEL BONNER, JOEL S. MILLER, University of Utah — The temperature dependence of magnetization M(T) of Fe[TCNE]₂ •xCH₂Cl₂, (x~0.3-1; TCNE = tetracyanoethylene) moleculebased magnet¹ demonstrates two phase transitions (at $T_1 \sim 95{\text{-}}100$ K and at $\sim 10-25$ K) whose temperatures depend upon the degree of disorder. The T_2 position of the ac susceptibility peak related to the high-temperature transition is almost frequency independent, while the low-temperature peak demonstrates a shift per frequency decade ($\phi = dT/T_1$)/d(log ω) of 0.03 characteristic for spin-glasses. A coercive field H_{cr} (400 Oe at 2 K) decreases exponentially on warming and vanishes when approaching T_1 . This behavior may be qualitatively described in terms of the Heisenberg mean-field model developed for the systems with competing ferrimagnetic (FM) and spin-glass ordering. At T_1 the system passes from PM to FM state (the M component parallel to H orders while the perpendicular M_{tr} freely rotates). On further cooling, the system begins to acquire a static M_{tr} component (non-vanishing H_{cr}). At T_2 , a crossover between weak and strong irreversibility occurs and a spin- or a cluster-glass state is achieved. [1] K. Pokhodnya, N. Petersen, and J. S. Miller. Inorg. Chem. 41, 1996 (2002)

¹Supported in part by the DE FG 03-93ER45504, DE-FG02-86ER45271, DE-FG02-01ER45931 grants.

Konstantin Pokhodnya Ohio State University/University of Utah

Date submitted: 07 Dec 2004

Electronic form version 1.4