Protein Folding Transition States as Eigenstates
KEN DILL1, UCSF

We are interested in the microscopic routes by which simple fast folding proteins fold, and the bottleneck steps. We model the process using a master equation. We find that folding differs from small molecule bond-formation kinetics in various ways. For example, simple mass-action miss important aspects of the heterogeneity of the routes. The energy landscape has a funnel shape. Also, the rate-limiting step is not a single microstructure; rather, the transition state can be characterized as an eigenstate. These observations may be useful for developing more efficient computational methods for conformational searching in protein structure prediction.

Co-authors are Banu Ozkan (Postdoc), John Chodera (Graduate Student), and Ke Fan (Postdoc), UCSF.

1Professor