Electric-field effects on the optical spectra of carbon nanotubes
MONICA PACHECO, ZDENKA BARTICEVIC, Universidad Santa Maria-Chile,
CLAUDIA ROCHA, ANDREA LATGE, Universidade Federal Fluminense-Brazil
— The theoretical understanding of the optical properties of single-wall carbon
nanotubes is an important problem to address since low energy lasers beam are
being used to identify the chirality and diameter of the tubes and their electronic
character. As well known, a single-wall carbon nanotube has many one-dimensional
subbands, leading to Van Hove singularities on the local density of states. When a
carbon nanotube is under the influence of a laser beam, optical transitions are al-
lowed between the Van Hove singularities and they can be observed experimentally
in the absorption spectra. In carbon nanotubes the optical absorption is suppressed
for polarization of light perpendicular to the nanotube axis, due to the depolariza-
tion effect. External magnetic and electric fields modify the energy spectrum of
carbon nanotubes inducing changes on the optical phenomena at low frequencies.
In this work we present results, using a tight-binding description, for the inter-band
absorption coefficient of carbon nanotubes under a magnetic field and an additional
external electrostatic potential for different light polarizations.