MAR06-2005-000068

Abstract for an Invited Paper for the MAR06 Meeting of the American Physical Society

Interaction of the N vacancy with H and Mg acceptors in p-type GaN^1

A.F. WRIGHT², Sandia National Laboratories

Results from recent experimental studies suggest that the N vacancy (V_N) may compensate Mg acceptors in GaN in addition to the compensation arising from H introduced during growth. To investigate this possibility further, density-functionaltheory calculations were performed to determine the interactions of V_N with H, Mg, and the MgH center in GaN, and modeling was performed to determine the state populations at elevated temperatures. The results indicate that V_N H and MgV_NH complexes with H inside the vacancy are highly stable in *p*-type GaN and act to compensate or passivate Mg acceptors. Furthermore, barriers for formation of these complexes were investigated and the results indicate that they can readily form at temperatures > 400 ° C, which is well below temperatures typically used for GaN growth. Overall, the results indicate that the V_N compensation behavior suggested by experiments arises not from isolated V_N , but rather from V_N H and MgV_NH complexes with H located inside the vacancy.

¹Supported by the Office of Basic Energy Sciences, US DOE. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94AL85000. ²With S. M. Myers, S. K. Estreicher, and M. Sanati