Giant electroresistance and giant magnetoresistance of Fe-doped amorphous carbon film on Si substrate

XIAOZHONG ZHANG, PENG TIAN, QINGZHONG XUE, Dept of Materials Science and Engineering, Tsinghua University, PR China — Amorphous Fe$_x$-C$_{1-x}$ films are deposited on Si substrates at different temperatures using pulsed laser deposition (PLD). It is found that the resistance of Fe$_x$-C$_{1-x}$ films on Si (100) substrates are controlled by the measuring current within a given temperature range. Correspondingly, giant electroresistance (ER) and giant magnetoresistance (MR) were found in this material. For example, Fe$_{0.01}$-C$_{0.99}$ film has a positive MR of 138% at temperature of 300K and magnetic field of 5T. It is found that the switching of the conducting channel from the Fe$_x$-C$_{1-x}$ film to the Si substrate plays an important role in the current-dependent resistance of Fe$_x$-C$_{1-x}$ films. The multilayer of Fe$_x$-C$_{1-x}$ films on Si (100) substrate was also prepared by PLD. This multiplayer material has a positive MR of over 30% at low magnetic field, and the MR sensitivity is comparable to the spin-valve structure of traditional GMR materials. However, this material has a novel MR mechanism. It is believed that this multiplayer material can find application in magnetic information storage such as magnetic sensors, magnetic recording head and magnetic random access memory.

Xiaozhong Zhang
Dept of Materials Science and Engineering, Tsinghua University

Date submitted: 04 Nov 2005