Abstract Submitted for the MAR06 Meeting of The American Physical Society

Superparamagnetic resonance in antiferromagnetic nanoparticles: systematic features in the temperature dependence¹ PRASANTA DUTTA, MOHINDAR SEEHRA, West Virginia University — Antiferromagnetic (AF) nanoparticles (NP) of dimensions ≈ 5 nm usually acquire significant magnetic moment even below T_N due to uncompensated surface spins. This moment follows superparamagnetism (SPM) above the blocking temperature $T_B < T_N$. In this work, we will discuss some unique features in the temperature dependence of the electron magnetic resonance (EMR) spectra which have been reported in NP of ferrihydrite, NiO and γFe_2O_3 [1]. As T is lowered towards T_B the resonance field H_r decreases and the linewidth ΔH increases so that $\delta H_r \approx (\Delta H)^n$ with $n \approx 3$ is observed. This is in line with the variation expected from the demagnetizing fields of non-spherical particles [2]. From the temperature variation of the line intensity I = $(\Delta H)^2$ h (h = peak-to-peak height), the location of $T_B(m)$ and $T_B(EMR)$ has been obtained [1]. For $T < T_B(m)$, as H_r approaches zero, the EMR line becomes highly asymmetrical, which is explained from the combined contributions of resonance at $+H_r$ and $-H_r$. [1]. Seehra et al, IEEE Trans. Magn; <u>37</u>, 2207 (2001); Seehra et al, J. Appl. Phys. <u>97</u>, 10J609 (2005); Dutta et al, Phys. Rev. B <u>70</u>, 174428 (2004). [2]. Nagata & Ishihara, J. Magn. Magn. Mater. <u>104-107</u>, 1571(1992).

¹Supported by a grant from the U.S Department of Energy.

Mohindar Seehra West Virginia University

Date submitted: 07 Nov 2005

Electronic form version 1.4