Abstract Submitted for the MAR06 Meeting of The American Physical Society

Optical evidence for a magnetically driven structural transition in the spin web Cu₃TeO₆ L. DEGIORGI, G. CAIMI, ETH Zurich, H. BERGER, L. FORRO', EPF Lausanne — Cu₃TeO₆ is a modest frustrated S = 1/2 spin system, which undergoes an anti-ferromagnetic transition at $T_N \sim 61 \ K$. The anti-ferromagnetic spin alignment in Cu₃TeO₆ below T_N is supposed to induce a magneto-elastic strain of the lattice. The complete absorption spectrum of Cu₃TeO₆ is obtained through Kramers-Kronig transformation of the optical reflectivity, measured from the far-infrared up to the ultraviolet spectral range as a function of temperature (T). Below $T^* \sim 50 \ K$, we find a new mode at 208 cm^{-1} . The spectral weight associated to this additional mode increases as $\propto (T^* - T)^{1/2}$ with decreasing T below T^* . The implication of the optical findings will be discussed in relation to the magnetic phase transition at T_N .

> L. Degiorgi ETH Zurich

Date submitted: 14 Nov 2005

Electronic form version 1.4