Microwave Dielectric Resonance and Negative Permittivity Behavior in Al$_2$O$_3$-CuO-Cu Nanocomposites

JEFFREY CALAME, JACOB BATTAT, Naval Research Laboratory, Washington DC 20375 — The frequency-dependent microwave (0.1-18 GHz) complex permittivity of nanocomposites based on the Al$_2$O$_3$/CuO/Cu system is investigated. The composites are formed by solution infusion of copper precursors into a porous Al$_2$O$_3$ matrix, followed by thermal decomposition to copper oxides and localized formation of CuAl$_2$O$_4$ spinels, and finally partial reduction by H$_2$ firing. The final material has a complicated microstructure and exhibits strong amplitude, relatively narrowband dielectric resonance in the microwave regime at intermediate concentrations (~15-18% by volume) of Cu. The resonances are superficially similar in structure to plasmon and Reststrahlen resonances typically seen in conductors at far-infrared to optical frequencies, but occurring at much lower frequencies in the composites. This is in contrast to the usual broadband induced-polarization dielectric relaxations observed in standard composites. Large concentrations of copper cause negative permittivity behavior below 6 GHz. Permittivity data, SEM micrographs, and possible explanations will be presented.

1Work supported by the Office of Naval Research