Multiferroicity of RMn$_{1-x}$Ga$_x$O$_3$ (R = Ho, Y) and Ho$_{1-x}$Y$_x$MnO$_3$

H.D. ZHOU, J.C. DENYSZYN, JOHN. B. GOODENOUGH, The University of Texas at Austin — RMn$_{1-x}$Ga$_x$O$_3$ (R = Ho or Y) and Ho$_{1-x}$Y$_x$MnO$_3$ single-crystals have been prepared. The experimental results revealed that the c axis decreases with increasing temperature with a larger $|dc/dT|$ above T_C than below it. This shows that the cooperative MnO$_5$ site rotations responsible for the ferrielectricity expend energy to induce the ferroic R$^{3+}$-ion displacements along the c axis. Ga doping raises the ferrielectric Curie temperature T_C and the Mn-spin reorientation temperature T_{SR} while lowering T_N of the Mn spins and the Ho magnetic ordering temperature T_2. The data show (i) an important coupling between the Mn$^{3+}$-ion and Ho$^{3+}$-ion spins; (ii) a T_{SR} that is driven by the cooperative MnO$_5$ site rotation and R$^{3+}$-ion displacements that control the c lattice parameter. Y doping favors the formation of $P6'_3cm'$ magnetic phase below T_N, and enhances the temperature region of $P6'_3cm'$ phase. Therefore, T_{SR} for the transition from $P6'_3cm'$ to $P6'_3cm'$ phase increases with increasing x, but T_{SR} disappears for $x > 0.8$ samples because the $P6'_3cm'$ phase already occupies the whole temperature region below T_N. The thermal conductivity data also support an enhanced spin-lattice interaction above T_N in the geometrically frustrated (GF) Mn-spin system.

H. D. Zhou
The University of Texas at Austin

Date submitted: 16 Nov 2005
Electronic form version 1.4