Abstract Submitted for the MAR06 Meeting of The American Physical Society

Thickness dependence of the properties of MgB_2 films grown by hybrid physical-chemical vapor deposition ALEXEJ POGREBNYAKOV, Department of Physics and Department of Materials Science and Engineering, The Pennsylvania State University, ARSEN SOUKIASSIAN, JOAN REDWING, Department of Materials Science and Engineering, The Pennsylvania State University, XIAOXING XI, Department of Physics and Department of Materials Science and Engineering, The Pennsylvania State University — Properties of pure MgB₂ films of different thicknesses (up to $\sim 1 \ \mu m$) grown by hybrid-physical-chemical vapor deposition on sapphire substrates were studied. In accordance with the previous results for the films with thicknesses up to about 400 nm, T_c of the films on Al₂O₃ levels off at a value of 40.0 - 40.5 K at thicknesses larger than 200 nm. The residual resistivity, ρ_0 , monotonically decreases with thickness, which is caused by a reduction of the surface and interface scattering (size effect on resistivity). For films with thickness over ~ 800 nm, ρ_0 is below 0.15 $\mu\Omega$.cm and RRR > 60. X-ray studies of the films did not reveal any other phases besides MgB₂. In this talk, MgB₂ films of even larger thickness and the thickness dependence of critical current density will also be reported.

> Alexej Pogrebnyakov Dept. of Physics and Dept. of Materials Science and Engineering The Pennsylvania State University

Date submitted: 16 Nov 2005

Electronic form version 1.4