Induced Interaction between Polypyrrole and SO$_2$ via Molecular Sieve 13X

BOONCHOY SOONTORNWORAJIT, ANUVAT SIRIVAT, PPC, Chulalongkorn University — Electrical conductivity sensitivity and interaction mechanisms between polypyrrole(Ppy)/molecular sieve 13X composites and CO$_2$, CO, and SO$_2$ were investigated. Polypyrrole was synthesized and composites were fabricated from dry mixing and dispersing zeolite particles into the Ppy matrix particles, and followed by compressing into a pellet form. Effects of zeolite concentration, cation type, and cation concentration were investigated. The electrical conductivity in air of Ppy doped with naphthalene-2-sulfonic acid(β) sodium salt increased monotonically with the doping level. There were negligible negative electrical conductivity responses of Ppy and its composites when exposed to CO$_2$, and CO in contrast to definite positive responses towards SO$_2$ in which the interaction was irreversible. Undoped Ppy and doped Ppy composites at 10% v/v of zeolite13X content possessed the highest sensitivity to SO$_2$; beyond this volume fraction the sensitivity was reduced with increasing molecular sieve 13X content. The composites of un-modified 13X, with Na$^+$ fully present within its cavity, gave the greatest electrical conductivity sensitivity towards SO$_2$. The sensitivity of Ppy/13X composite to SO$_2$ diminished when the cation Na$^+$ was exchanged to other alkali cations in this decreasing order: Cs$^+$, K$^+$, and Li$^+$.

Anuvat Sirivat
PPC, Chulalongkorn University

Date submitted: 16 Nov 2005

Electronic form version 1.4